首页> 外文OA文献 >Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies
【2h】

Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies

机译:通过整合基因本体论和蛋白质相互作用网络来鉴定候选疾病基因:原发性免疫缺陷的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Disease gene identification is still a challenge despite modern high-throughput methods. Many diseases are very rare or lethal and thus cannot be investigated with traditional methods. Several in silico methods have been developed but they have some limitations. We introduce a new method that combines information about protein-interaction network properties and Gene Ontology terms. Genes with high-calculated network scores and statistically significant gene ontology terms based on known diseases are prioritized as candidate genes. The method was applied to identify novel primary immunodeficiency-related genes, 26 of which were found. The investigation uses the protein-interaction network for all essential immunome human genes available in the Immunome Knowledge Base and an analysis of their enriched gene ontology annotations. The identified disease gene candidates are mainly involved in cellular signaling including receptors, protein kinases and adaptor and binding proteins as well as enzymes. The method can be generalized for any disease group with sufficient information.
机译:尽管现代的高通量方法,疾病基因的鉴定仍然是一个挑战。许多疾病非常罕见或致命,因此无法使用传统方法进行调查。已经开发了几种计算机方法,但是它们有一些局限性。我们介绍了一种新方法,该方法结合了有关蛋白质相互作用网络属性和基因本体论术语的信息。具有高计算网络分数和基于已知疾病的统计学上显着的基因本体术语的基因被优先考虑为候选基因。该方法用于鉴定新的原发性免疫缺陷相关基因,其中发现了26个。该研究使用了免疫相互作用知识库中所有可用的人体免疫原性基因的蛋白质相互作用网络,并对它们丰富的基因本体注释进行了分析。鉴定出的疾病基因候选物主要参与细胞信号传导,包括受体,蛋白激酶,衔接子,结合蛋白以及酶。该方法可以推广到具有足够信息的任何疾病组。

著录项

  • 作者

    Ortutay, Csaba; Vihinen, Mauno;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号